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Algebraic solution of the Klein-Gordon equation 

H H NICKLE and BRIAN L BEERS 
Department of Physics, Southern Illinois University at Carbondale, Carbondale, 
Illinois 62901, USA 

MS received 25 May 1972, in revised form 8 August 1972 

Abstract. An algebraic approach to the solution of the Klein-Gordon equation is described 
for the case of a charged particle in the presence of plane-wave electromagnetic radiation. 
From an examination of the commutation relations between P, = -i(ajax,)  and A , ,  P . A ,  
A .  A ,  etc, one finds a new set of ‘translation’ operators II, which commute with the total 
‘Hamiltonian’. We then construct a representation of the PoincarC group out of the II,, and 
their canonically conjugate ‘coordinates’ Q v .  The solutions are shown to correspond to the 
spin zero, mass m representation of the restricted Poincare group. Applications of the 
technique to other quantum-mechanical problems are also briefly discussed. 

1. Algebraic formulation of the problem 

The object of this paper is to describe an algebraic approach to the solution of relativistic 
quantum-mechanical problems involving the interaction of a charged particle with 
various types of external electromagnetic fields. In order to illustrate the method, we 
use it to solve the Klein-Gordon equation for a charged particle interacting with a 
classical (unquantized) plane-wave radiation field-a problem which is sufficiently 
nontrivial to illustrate the power of a purely algebraic approach, even though the 
solution of this particular problem is well known (see, for example, Volkov 1935, Dirac 
1946, Taub 1949, Nikishov and Ritus 1964, Brown and Kibble 1964). 

In this connection it should be noted that Chakrabarti (1968) was apparently the 
first to notice that the Volkov solutions imply the existence of a PoincarC algebra (the 
same algebra which we shall use to solve the problem). We also call the reader’s 
attention to the relatively complete group-theoretical analysis of elementary particles 
in certain types of external electromagnetic fields given by Bacry et a1 (1970a, b) (see 
also Richard 1972). The work described below was completed before we learned of the 
earlier work by Chakrabarti and Bacry et al, and our work is certainly very similar in 
spirit to theirs. There is, however, one major difference between our algebraic method 
and their earlier work ; we derive the solution from first principles by using algebraic 
methods only. Chakrabarti and other workers noted that, given the explicit form of 
the solutions, certain transformations must exist between the ‘free’ generators and the 
generators in the presence of the laser field. It is our hope that the algebraic method can 
be applied to related problems which have not yet been solved, and by using algebraic 
and/or group-theoretic techniques it will be possible to obtain exact analytic solutions. 
We therefore briefly discuss other applications of our method in 9 2. 

Our procedure is based on an investigationof the algebra satisfied by the generators 
of space-time translations, where the usual generators are regarded as being ‘deformed’ 
by the presence of the electromagnetic field, the ‘deformation’ Geing specified by the 
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principle of minimal electromagnetic interaction (Gell-Mann 1956, especially 0 3.3 on 
p 853). From this algebra a set of operators is identified which commute with the 
‘Hamiltonian’ of the problem and obey the algebra of the generators of the Poincare 
group. This being the case, we may classify the eigenstates of the ‘Hamiltonian’ 
according to their transformation properties under the Poincare group. That is, the 
Hilbert space of eigenstates of the ‘Hamiltonian’ must be the carrier space for a unitary 
ray representation of the restricted Poincart group Pf, , which is equivalent to asking 
for true representations of the covering group of Pf, (Bargmann 1954). Since the 
irreducible unitary representations of P f, have been classified by Wigner (1939) and 
Shirokov (1958), and we have an explicit realization of the generators in hand, we are 
able to explicitly determine which representations occurt. 

The essence of the proposed algebraic method is best illustrated by first considering 
the case of the free Klein-Gordon equation$. 

For a free Klein-Gordon particle the Poincare generators are the usual space-time 
translation operators P, = - i(a/ax,) and the six Lorentz operators M i ,  = x,P,- x,P,. 
The invariant ‘Hamiltonian’(wave operator) is given by§ H ,  = P,P,, and the eigenvalue 
problem is to determine the solutions of the wave equation H,J/ = - m2+. One easily 
verifies that [P, ,  H,] = [Mi , ,  H , ]  = 0. The representation is first specified by the value 
of the mass-squared operator, which is, of course, - m2.  For fixed mass there are two 
representations, one each for the positive and the negative energy states. For these 
time-like (particle-like) representations a second Casimir operator is provided by S,”Si 
(for further details, see Shirokov 1958), where SE = &pvaaM~aPa is the Pauli-Lubanski 
vector (epvaa is the completely antisymmetric Levi-Civita tensor density). By symmetry 
S,” vanishes identically. These two Casimir operators completely specify the representa- 
tion as the mass m, spin zero representation of P i .  

Once the representation has been specified, the manifold of states is constructed by 
the little-group method of Wigner (1939) (this method has become known as the method 
of induced representations ; see, for example, Mackey 1968). For positive mass repre- 
sentations, the little group is SU(2). In the rest frame of the particle a set of basis vectors 
is chosen which form an irreducible representation of the little group. States in an 
arbitrary frame are obtained by ‘boosting’ out of this special frame. The result for 
particle-like representations is that the state vectors are labelled by p, ,  J ,  and A, where 
prpr = -m2. Here p p  denotes the eigenvalue of P,, J is the spin angular momentum 
of the representation of SU(2) which occurs (this is the label provided by S,”S,”), and I 
is related to the z component of the spin (the exact relation depends on whether one 
works in the spin basis or the helicity basis). 
t Wigner (1939) has shown that it is always possible to do this. In general, however, the reduction is a non- 
trivial problem. 
1 Before proceeding, however, it is important for the reader to recall the distinction between a representation 
and a realization (see, eg Miller 1968 or Haig et al 1963). The nontrivial unitary representations of P I  (which 
are all infinite dimensional) are purely algebraic constructions which may be realized in any of the many 
isomorphic Hilbert spaces available. What we illustrate below is the well known fact that the only information 
contained in the free Klein-Gordon equation-over and above PoincarC invariance-is the specification that 
the representation be realized in the space of functions on space-time. We belabour this rather fine point 
somewhat, because we shall present two different realizations of the same representation of P I  during the 
course of this article. 
8 We use the nomenclature ‘Hamiltonian’ for this operator because this is the name reserved for thecorrespopd- 
ing classical object in manifestly covariant canonical mechanics. This operator is to be distinguished from 
the energy operator Po which is normally called the Hamiltonian of the system. It should also be mentioned 
that the constructions given in this article (see also Beers and Nickle 1972a) will immediately provide the 
solution to the corresponding classical problem if the commutators are replaced by Poisson brackets. 
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For the case at hand, this procedure is trivial-since we have the identity representa- 
tion of the little group ( J  = 0), and the states are-uniquely labelled as simultaneous 
eigenstates of P,. For the present realization of the P,, the solutions are, of course. 
given by i j K G  - exp(ip,x,). We have been unusually explicit in our discussion of this 
seemingly trivial problem for two reasons. First, for the specific problem used to 
illustrate the algebraic method (namely, the problem of a Klein-Gordon particle in the 
presence of plane-wave electromagnetic radiation), a formally identical procedure is 
used to construct the exact solutions. Secondly, for the more complicated problems 
which we hope to be able to solve by using this algebraic approach, more complicated 
representations of P i  will occur (in particular, see the algebraic solution of the Dirac 
equation as given by Beers and Nickle 1972b, c). 

Now let us consider the Klein-Gordon particle in the presence of a plane-wave 
electromagnetic field. In analogy to  the free-particle case, the invariant ‘Hamiltonian’ 
is now given by 

H = (P , -qA, )2 ,  (1) 

where the vector potential is given by 

A , k  t )  = a,f (4 )  + b,g(4) ,  

where f and g are arbitrary functions of the argument 4 = k . x = k . r -  w t  and 
k .  a = k .  b = a .  b = 0. The possibility of an algebraic solution then follows from a 
consideration of the so called ‘ P  algebra’, namely the complete set of commutation 
relations between P,, A , ,  P . A,  A . A,  and H (for further details, see Beers and Nickle 
1972a). In deriving this algebra it is essential to note that k .  P is a constant as far as 
the P algebra is concerned, that is, k . P commutes with A, ,  P . A,  and A . A (due to the 
fact that k . k = 0 for the electromagnetic wave). We may therefore replace k . P by the 
constant [ = k . P # 0 (this is also the essential reason why we are able to construct the 
new set of ‘translation’ operators from the elements of the P algebra). 

It is clear that the principle of minimal electromagnetic interaction has ‘deformed’ 
the usual Poincare generators in such a way that they no longer generate the Poincare 
group, that is, [P, - q A , ,  P, - qA,] # 0, etc. The algebraic approach involves using the 
‘P  algebra’ to construct a new set of ‘translation’ operators IT, which commute with 
each other and also commute with the invariant ‘Hamiltonian’ (1). By using the 
‘ P  algebra’ together with the commutators of x, with those elements of the ‘ P  algebra’ 
which appear in the IT, , we also find a new set of ‘coordinates’ Q, which are canonically 
conjugate to the IT,, that is, [ll,, QY]  = --id,,. We then construct new Lorentz 
operators according to the rule : M,, = Q,II,,- Q,IT,. The IT, and the M , ,  are then 
obviously the ten generators of a realization of the Poincare group. 

For the sake of brevity, we cite here only the explicit results for ll, and Q v  : 

n, = p ,  - (q/Ok,(P . A )  + (q2/20k, (A . A )  (3) 

Q,. = x,. + (d1) j A ,  d 4  - (q/i2)k, j ( P .  A )  d 4  +%s/i)2k, / ( A  . A )  d4.  (4) 

Here it should be noted that not only do the new translation generators commute with 
H ,  but in fact the Hamiltonian (1) now takes the form H = IT,ll,. One can also easily 
verify that the Q, commute with themselves; furthermore [Q,, HI = -2iII,. and 
consequently the Lorentz operators M , ,  commute with H .  
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Using the ‘new’ set of group operators, we construct the Pauli-Lubanski ‘spin’ 
operator S ,  = ~ ~ , v l u M v , l I I u  and easily verify that it vanishes identically by symmetry. 
Thus we have II . II = -mz  and S .  S = 0. These two Casimir operators completely 
specify the solutions as the spin zero, mass m representation of the restricted Poincare 
group. The explicit position-space form of the solution follows easily from the fact that 
the states are uniquely labelled as simultaneous eigenstates of the operator (3), which 
gives the well known result 

where K . K = -m2  and 5, denotes the eigenvalue of the operator (k . P) when acting 
on the eigenfunction $,(x) (here it is important to realize that the eigenvalue (, depends 
on the value of the four-vector K characterizing the exact solution IC/&)). 

It  should also be noted that the ‘new’ translation operators II, play the same role 
as the integration constants (associated with the momentum) in the Hamilton-Jacobi 
solution of the classical problem, that is, they correspond to the constant Hamilton- 
Jacobi momenta of the classical solution (see, for example, Landau and Lifshitz 1962 ; 
the relation between the classical and quantum-mechanical treatments is discussed in 
detail in Appendix C of Brown and Kibble 1964). So in a certain sense the present 
approach can also be regarded as a purely algebraic method of solving the Hamilton- 
Jacobi equation?. 

2. Other applications of the algebraic method 

Here we wish to briefly indicate several problems where the algebraic method appears 
to be helpful. 

2.1. Motion of a charged particle in the presence of a plane electromagnetic wave plus a 
static magnetic field whose direction is parallel to the direction of propagation of the wave 

The classical, relativistic equations of motion for this problem were first solved by 
Roberts and Buchsbaum (1964), and the Klein-Gordon and Dirac equations were 
subsequently solved by Redmond (1965). Although the solution of the Klein-Gordon 
equation has been investigated in detail by Redmond, the present approach leads to a 
very simple and elegant solution. In order to sketch the method, let us take 

Then the invariant Hamiltonian is given by 

t One of us (BLB) has been able to prove that ifs is a solution of the Hamilton-Jacobi equation with potential 
A,, then ijj = exp(S) is a solution of the Klein-Gordon equation in the gauge A; = A,+d,A, where A is 
determined from the equation (d,-2qd,A)(d,S-qA,)+(d,A-qd,)d,A = 0. This suggests that it may be 
possible to establish a ‘deeper’ connection between the algebraic approach and the classical theory of contact 
transformations. This is one of our reasons for believing that the algebraic method (or appropriate ‘variations 
on this theme’) will be helpful in the solution of more complicated quantum-mechanical problems. 
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However, it is clear from the discussion given in 4 1 that the Hamiltonian (7) can be 
rewritten in the form H = npnp - 2qBl7,x + ( ~ B x ) ’ ,  where the n, are given by equation 
(3) with k, = (0, 0, k, io) and A ,  = A(kz - o t ) d , ,  . We immediately see that the problem 
separates because the vector potential of the plane-wave field is a function of k z - o t  
while the cross term involving - 2qBl7,x can be replaced by - 2 q B ~ , x  (here IC, denotes 
the eigenvalue of the operator n,). Hence the problem reduces to 

H = P: - 2q3K2X + ( ~ B x ) ~  + + n$ + II;, 
which corresponds to a one dimensional harmonic oscillator plus motion of the type 
described in Q 1. 

This problem immediately suggests another simple problem which can be solved 
exactly. This is dealt with in the following section. 

2.2. Motion of a charged particle in the presence of a plane electromagnetic wave plus 
harmonic forces in the plane perpendicular t o  the direction of propagation o f t h e  wave 

Again assuming the vector potential of the plane-wave field to be given by equation (51, 
the invariant Hamiltonian is given by H = ( P I  - qA)’ + P i  + Pi + P i  + t k l x 2  + $k ,y2 .  
Once again we can use the results of 4 1 to rewrite this Hamiltonian in the form: 
H = n,n,+$k,x2 +$k ,y2 ,  that is, the problem ‘separates’ into a two dimensional 
harmonic oscillator plus a problem of the type solved in 5 1. 

These two examples suggest a more general type of problem which can easily be 
solved by using the algebraic approach. 

2.3. The general type ofproblem easily solved b y  the algebraic approach 

Suppose the Klein-Gordon equation can be solved in the presence of a given external 
field specified by the vector potential A r ) ( x ) .  Under what conditions can the same 
problem be solved in the presence of an additional plane-wave field specified by the 
vector potential AF’(kx)? 

The invariant Hamiltonian is now given by 
H = (P, - qA:” - qAL2’)2 = ( P  - qA‘”)2 -2q(P - qA“’) . A ( , )  + qZA‘2’ . ’4‘2). 

Now if A”’, A( ’ )  = 0 and n . A(’) = P . A(’) (where rI, is given by equation (3) with A:’ 
appearing on the right hand side), this Hamiltonian can be rewritten in the form 

H = (n -qA”’)’. (8) 

Furthermore, if [17,,A!,2)] = [P , ,At2) ]  and if A r ) ( x )  = AF)(Q) (where Q, is given by 
equation (4) with A;)  appearing on the right hand side), then it is clear that if the solution 
to the problem defined by the Hamiltonian (P - qA(,))’ is known, then the solution of 
the problem defined by the Hamiltonian (8) can also be determined. So under the above 
restrictions, a solvable problem will remain solvable even in the presence ofan additional 
plane-wave field. 

2.4. Motion of a charged particle in the presence of a plane electromagnetic wave plus a 
constant magnetic j e l d  pointing in any arbitrary direction 

As a fourth example of the utilization of this algebraic approach, we wish to describe 
a preliminary approach to the solution of the Klein-Gordon equation for a charged 
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particle in the presence of both plane-wave electromagnetic radiation and a constant 
magnetic field pointing in any arbitrary direction. 

It is convenient to write the invariant Hamiltonian in the form 

H = ( P - q A - q d , ) Z + P i ,  (9) 

where A denotes the vector potential of the plane-wave field and the constant magnetic 
field is described by the vector potential d, = -*r x B“. 

Choosing the z axis to coincide with the direction of propagation of the plane wave, 
one can easily verify that the vector operator K = P- Po; -$r x Bo commutes with the 
Hamiltonian (9). Here i t  is essential to note that the components K,(i = 1,2,3) are not 
c numbers, for example, [ K ,  , K 2 ]  = - iqB--even though all three components commute 
with the Hamiltonian (9). 

The algebraic method of attack is to consider the ‘new’ algebra generated by the K i ,  
the Hamiltonian (9), and the remaining elements of the so called ‘P algebra’ discussed 
in Q 1 (that is, the elements of the ‘new’ algebra are the elements of the old ‘P algebra’, 
except that the new Hamiltonian (9) is used, plus the three new generators Ki). Hopefully 
this algebra can be identified without too much difficulty, and if its representations have 
already been investigated by mathematicians, then we will be able to solve the physical 
problem exactly. If the representations of the resulting algebra have not yet been 
investigated mathematically, then the problem will be to first classify the representations 
of the ‘new’ algebra. Although we have not yet completed our study of this particular 
problem, we wish to  emphasize that in principle at  least it appears to be solvable by 
using this type of approach. 

References 

Bacry H, Combe P and Richard J L 1970a Nuovo Cim. A 67 267-98 
__ 1970b Nuovo Cim. A 70 289-312 
Bargmann V 1954 Ann. Math. 59 1-46 
Beers B L and Nickle H H 1972a Lett. Nuovo Cim. 4 320-2 
__ 1912b Bull. Am. Phys. Soc. 17 565 
- 1972c J .  math. Phys. to be published 
Brown L S and Kibble T W B 1964 Phys. Rev. 133 A705-19 
Chakrabarti A 1968 Nuovo Cim. A 56 604-23 
Dirac P A M 1946 Commun. Dublin Institute Adv. Stud. series A No 3 
Gell-Mann M 1956 Nuovo Cim. Suppl. 4 84846 
Haig F R, Jordan T F and Macfarlane A J 1963 University of Rochester Technical Report URPA-1 (Washing- 

ton, DC: Office of Technical Services, Department of Commerce, No TID-19502) chap 5 
Landau L D and Lifshitz E M 1962 The Classical Theory ofFields (Oxford: Pergamon) pp 128-Y 
Mackey G W 1968 Induced Representations of Groups and Quantum Mechanics (New York: Benjamin) 
Miller W 1968 Lie Theory and Special Functions (New York: Academic Press) chap 2 
Nikishov A I and Ritus V I 1964 Sov. Phys.-JETP 19 529-41 
Redmond P J 1965 J .  math. Phys. 6 1163-8 
Reiss H R and Eberly J H 1966 Phys. Reu. 151 105846 
Richard J L 1972 Nuovo Cim. A 8 485-500 
Roberts C S and Buchsbaum S J 1964 Bull. Am. Phys. Soc. 9 14 
Schwinger J 1951 Phys. Rev. 82 664-79 
Shirokov Yu M 1958 Sou. Phys.-JETP 6 664-73,919-28,929-35 
Taub A H 1949 Rev. mod. Phys. 21 388-92 
Volkov D M 1935 Z .  Phys. 94 250-60 
Wipe r  E P 1939 Ann. Math. 40 149-204 


